47 research outputs found

    Bijective mapping preserving intersecting antichains for k-valued cubes

    Get PDF
    Generalizing a result of Miyakawa, Nozaki, Pogosyan and Rosenberg, we prove that there is a one-to-one correspondence between the set of intersecting antichains in a subset of the lower half of the k-valued n-cube and the set of intersecting antichains in the k-valued (n-1)-cube.Comment: 6 page

    On covering expander graphs by Hamilton cycles

    Full text link
    The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree Δ\Delta satisfies some basic expansion properties and contains a family of (1−o(1))Δ/2(1-o(1))\Delta/2 edge disjoint Hamilton cycles, then there also exists a covering of its edges by (1+o(1))Δ/2(1+o(1))\Delta/2 Hamilton cycles. This implies that for every α>0\alpha >0 and every p≥nα−1p \geq n^{\alpha-1} there exists a covering of all edges of G(n,p)G(n,p) by (1+o(1))np/2(1+o(1))np/2 Hamilton cycles asymptotically almost surely, which is nearly optimal.Comment: 19 pages. arXiv admin note: some text overlap with arXiv:some math/061275

    Conflict-free coloring of graphs

    Full text link
    We study the conflict-free chromatic number chi_{CF} of graphs from extremal and probabilistic point of view. We resolve a question of Pach and Tardos about the maximum conflict-free chromatic number an n-vertex graph can have. Our construction is randomized. In relation to this we study the evolution of the conflict-free chromatic number of the Erd\H{o}s-R\'enyi random graph G(n,p) and give the asymptotics for p=omega(1/n). We also show that for p \geq 1/2 the conflict-free chromatic number differs from the domination number by at most 3.Comment: 12 page

    Compactness and finite forcibility of graphons

    Get PDF
    Graphons are analytic objects associated with convergent sequences of graphs. Problems from extremal combinatorics and theoretical computer science led to a study of graphons determined by finitely many subgraph densities, which are referred to as finitely forcible. Following the intuition that such graphons should have finitary structure, Lovasz and Szegedy conjectured that the topological space of typical vertices of a finitely forcible graphon is always compact. We disprove the conjecture by constructing a finitely forcible graphon such that the associated space is not compact. The construction method gives a general framework for constructing finitely forcible graphons with non-trivial properties

    The number of Hamiltonian decompositions of regular graphs

    Full text link
    A Hamilton cycle in a graph Γ\Gamma is a cycle passing through every vertex of Γ\Gamma. A Hamiltonian decomposition of Γ\Gamma is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki's theorem from the 19th century, showing that a complete graph KnK_n on an odd number of vertices nn has a Hamiltonian decomposition. This result was recently greatly extended by K\"{u}hn and Osthus. They proved that every rr-regular nn-vertex graph Γ\Gamma with even degree r=cnr=cn for some fixed c>1/2c>1/2 has a Hamiltonian decomposition, provided n=n(c)n=n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ)H(\Gamma), the number of such decompositions of Γ\Gamma. Our main result is that H(Γ)=r(1+o(1))nr/2H(\Gamma)=r^{(1+o(1))nr/2}. In particular, the number of Hamiltonian decompositions of KnK_n is n(1−o(1))n2/2n^{(1-o(1))n^2/2}

    Extremal graphs for clique-paths

    Full text link
    In this paper we deal with a Tur\'an-type problem: given a positive integer n and a forbidden graph H, how many edges can there be in a graph on n vertices without a subgraph H? How does a graph look like if it has this extremal edge number? The forbidden graph in this article is a clique-path: a path of length k where each edge is extended to an r-clique, r >2. We determine both the extremal number and the extremal graphs for sufficiently large n.Comment: 12 pages, 7 figure
    corecore